- Kirkwood, J. K., and F. P. Buff, "The Statistical Mechanical Theory of Solutions. I," J. Chem. Phys., 19(6), 774 (1951).
- Solutions. I," J. Chem. Phys., 19(6), 774 (1951).

 Machat, V., and T. Boublik, "Vapor-Liquid Equilibrium at Elevated Pressures from the BACK Equation of State. II: Binary Systems," Fluid Phase Equil., 21, 11 (1985).
- Mansoori, G. A., N. F. Carnahan, K. E. Starling, and T. W. Leland, "Equilibrium Thermodynamic Properties of the Mixture of Hard Spheres," J. Chem. Phys., 54(4), 1523 (1970).
- McGuigan, D. B., and P. A. Monson, "Analysis of Infinite Dilution Partial Molar Volumes Using a Distribution Function Theory," Fluid Phase Equil., 57, 227 (1990).
- Petsche, I. B., and P. G. Debenedetti, "Solute-Solvent Interactions in Infinitely Dilute Supercritical Mixtures: A Molecular Dynamics Investigation," J. Chem. Phys., 91(11), 7075 (1989).
- Rozen, A. M., "The Unusual Properties of Solutions in the Vicinity of the Critical Point of the Solvent," Russ. J. Phys. Chem., 50(6), 837 (1976)
- Sengers, J. V., and J. M. H. Levelt Sengers, "Critical Phenomena in

- Classical Fluids," *Progress in Liquid Physics*, C. A. Croxton, ed., Wiley, New York, 103 (1978).
- Smit, B., and K. R. Cox, "A New Approach for Calculating the Accessible Volume in Equations of Sate for Mixtures. I: Theory and Implementation in the van der Waals Equation of State," Fluid Phase Equil., 43, 171 (1988a).
- ----, "A New Approach for Calculating the Accessible Volume in Equations of Sate for Mixtures. II: Application to Lennard-Jones Mixtures," Fluid Phase Equil., 43, 181 (1988b).
- Wheeler, J. C., "Behavior of a Solute Near the Critical Point of an Almost Pure Solvent," Ber. Bunsenges. Phys. Chem., 76, 308 (1972).

Note: See the "Letters to the Editor" Section on p. 1927 in this issue for comments.

Manuscript received June 8, 1990, and revision received Sept. 7, 1990.

Correction

In the Note titled "Viscosity Effects in Cocurrent Three-Phase Fluidization" (October 1990, p. 1613), the order of authorship should be changed to read: B. P. A. Grandjean, P. J. Carreau, I. Nikov, and J. Paris.